Идеи дизайна интерьера

+1000 идей для Вашего интерьера!

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём

12.03.2023 в 00:56

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём

    0

    Добрый день!
    Имею частный дом, кирпичный, старой постройки. Ввод в дом 3-х-фазный. На входе стоит 3-х-фз. реле напряжения и контактор. Также везде, где проложены провода с заземлением поставил УЗО либо диф.автоматы (это чтобы исключить вопросы по этому поводу). Заземления не было. Позавчера сделал. Прокопал траншею, забил 3 штыря на глубину 3 метра (круглая сталь 20мм), на расстоянии 3 метра друг от друга, обвязал их стальной полосой 40х4 мм (сварка), завёл в дом, до щитка кинул медный провод сечением 10мм. Штыри забивал вряд, для треугольника места не хватает, от стены дома до дороги (грунтовой) 1,5 метра. В щитке землю посадил на корпус щитка, он железный.
    На этом же газончике стоит бетонный столб-опора ЛЭП. С этой опоры ввод ко мне в дом. Ноль на этой опоре заземлён тут же. Пришлось один из штырей забивать на расстоянии 1 метра от опоры.
    Нулевой провод с земляным не соединял нигде.
    Попробовал лампочкой между одной из фаз и землёй - горит ярко.
    Далее проверял китайским тестером-мультиметром (другого не имею).
    Между любой из фаз и землёй примерно то же напряжение, что и между этой же фазой и нулём, плюс-минус 1-2 Вольта.
    Сопротивление между землёй и нулём (в моём щитке) около 50-60 Ом, напряжение между ними же 4-5 Вольт. Повторюсь, в доме никаких соединений между землёй и нулём нет. Если в щитке отсоединить провод, который идёт от забитых штырей, то сопротивление показывает "Бесконечность".

Напряжение между фазой и нулем. Переменное напряжение — три фазы и ноль

Начать стоит с основ — с переменного напряжения и тока, его природы и принципа передачи к конечным потребителям. Тема переменного тока заслуживает отдельного рассмотрения, но для понимания фазы, нуля и земли на бытовом уровне выделим основные моменты.

Мощные генераторы электростанции вырабатывают напряжение в десятки киловольт. Затем через повышающие и понижающие трансформаторы электроэнергия приходит в дома с привычными нам параметрами 220 Вольт 50 Герц. Последний промежуточный элемент между электростанцией и домом — понижающий распределительный трансформатор. Разбираться в особенностях его работы сейчас не будем. Но для понимания, заменим его, все промежуточные трансформации и генератор на электростанции обычным трехфазным генератором на 220 Вольт.

Трехфазный генератор упрощенно состоит из ротора (вращающегося магнита) и трех обмоток статора, смещенных друг относительно друга на 120° (три фазы — отсюда и пошло название фаза, обозначающее вывод начала обмотки). Начала и концы обмоток трехфазного генератора принято обозначать буквами A, B, C и X, Y, Z. Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Концы обмоток соединяются звездой в один узел, называемый нейтральной или нулевой точкой. Тот же принцип и в понижающем распределительном трансформаторе — концы обмоток соединяются в нулевой точке, а начала обмоток — это три фазы с линейным напряжением 380 Вольт.

Ротор генератора, вращаясь, создает электродвижущую силу, которая при условии, что цепь замкнута, заставляет свободные электроны в проводах направленно перемещаться от зоны с большим потенциалом (избытком электронов) к зоне с меньшим потенциалом (недостатком электронов). Давайте условно остановим время и рассмотрим что происходит с напряжениями в каждой фазе. Нам известно, что напряжение в розетке между фазой и нулем 220 Вольт. Это действующее значение напряжения , и после перевода в амплитудное получим 312 Вольт. Примем, что это напряжение на выводе A генератора (или трансформатора). Для определения напряжения на двух оставшихся выводах также условно примем, что потребление по трем фазам симметричное. Тогда нулевой провод фактически не нужен, поэтому отсоединим его от генератора (трансформатора) — в жизни эта ситуация называется обрывом (отгоранием) общего нуля. Но ноль у нас никуда не делся. Важно понимать, что ноль — это не просто четвертый провод от трансформатора. Ноль это в первую очередь общая точка соединения трех фазных нагрузок. И ток в идеале не течет от фазы к нулю трансформатора и обратно. Ток течет между тремя фазами если нагрузки симметричные. И лишь когда нагрузки несимметричные (а в реальной жизни так всегда) только часть тока по четвертому проводу возвращается в трансформатор.

Что покажет мультиметр между фазой и землей. Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 01

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 02

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 03

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 04

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 05

Низкое напряжение между фазой и землёй. Почему между нейтралью и заземлением всегда есть разность потенциалов

Основная причина наличия напряжения между PE и N заключается в том, что по нулевому проводу протекает электрический ток и, согласно закону Ома, имеется падение напряжения, зависящее от сопротивления токопроводящей жилы.

Несмотря на то, что материал, из которого изготовлены провода, отличается высокой проводимостью, большая длина линий приводит к значительным потерям в сети. Поэтому при расчёте сечения кабелей учитываются два фактора - нагрев проводов и допустимое падение напряжения , причём выбирается бОльшее из двух значений.

При большой протяжённости линии сечение провода, выбранное по потерям, многократно превышает необходимое сечение, выбранное по нагреву.

В пятипроводной системе электроснабжения напряжение между землёй и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места разность потенциалов между РЕ и N увеличивается на величину падения напряжения в нейтральном проводнике и тем выше, чем дальше от подстанции и чем хуже распределена нагрузка по фазам и больше уравнительный ток в нейтрали .

Значительное количество линий электропередач были рассчитаны и проложены ещё в советское время, когда нагрузка на провода была намного ниже.

Сейчас с появлением электрических бойлеров, стиральных и посудомоечных машин и другого оборудования потребляемая мощность и ток выросли. Это привело к росту потерь в проводах, в том числе в нейтральном, и росту напряжения между землёй и нулём .

Какое сопротивление между нулем и землей. Можно ли использовать ноль вместо заземления

В современных домах используется. По этой схеме заземляется нейтраль питающего трансформатора и по нулевому проводу текут уравнительные токи. Поэтому между нулём в электропроводке и заземлёнными элементами конструкции, например, водопроводом, всегда есть какой-то потенциал.

Как правило, он составляет всего несколько вольт, но в сельской местности при большой протяжённости линий электропередач этот потенциал может достигать 30-40 В, что достаточно чувствительно при прикосновении, а в сырых помещениях опасно для здоровья и жизни.

Ещё более опасной является ситуация обрыва нейтрального проводника на участке между зданием и питающим трансформатором. При этом на нулевой клемме и подключённой к ней заземляющим

  • Питание жилых домов осуществляется по четырёхпроводной (пятипроводной с заземлением) схеме. В этой системе электроснабжения нейтральный провод N (PEN) за счёт уравнительных токов обеспечивает постоянное напряжение в розетке. При его обрыве напряжение в розетке может колебаться в диапазоне 0-380В, а на нейтральной клемме повышаться до 220В.
  • Для питания электроприборов они должны быть подключены сразу к двум клеммам - нулевой и фазной. При обрыве нейтрали соответствующий контакт в розетке и присоединённый к нему участок электропроводки через включённый аппарат окажется подключённым к фазному проводу.

Поэтому на вопрос "можно ли заземление кинуть на ноль" ответ однозначный - НЕЛЬЗЯ . Такое подключение защитит от поражения электрическим током при повреждении изоляции электроприбора, но является опасным для жизни в случае обрыва нейтрали.

Напряжение между землей и нулем. Напряжение и сопротивление между землёй и нулём 06

Информация! Использовать заземляющий проводник вместо нулевого допускается только в схеме электропитания TN-C, в которой разделение провода PEN на PE и N происходит в электрощите. В настоящее время эта схема не используется из-за повышенной опасности.

Между фазой и землей 120 вольт. Почему между нейтралью и заземлением всегда есть разность потенциалов

Основная причина наличия напряжения между PE и N заключается в том, что по нулевому проводу протекает электрический ток и, согласно закону Ома, имеется падение напряжения, зависящее от сопротивления токопроводящей жилы.

Несмотря на то, что материал, из которого изготовлены провода, отличается высокой проводимостью, большая длина линий приводит к значительным потерям в сети. Поэтому при расчёте сечения кабелей учитываются два фактора — нагрев проводов и допустимое падение напряжения , причём выбирается бОльшее из двух значений.

Между фазой и землей 120 вольт. Почему между нейтралью и заземлением всегда есть разность потенциалов

При большой протяжённости линии сечение провода, выбранное по потерям, многократно превышает необходимое сечение, выбранное по нагреву.

В пятипроводной системе электроснабжения напряжение между землёй и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места разность потенциалов между РЕ и N увеличивается на величину падения напряжения в нейтральном проводнике и тем выше, чем дальше от подстанции и чем хуже распределена нагрузка по фазам и больше уравнительный ток в нейтрали .

Значительное количество линий электропередач были рассчитаны и проложены ещё в советское время, когда нагрузка на провода была намного ниже.

Сейчас с появлением электрических бойлеров, стиральных и посудомоечных машин и другого оборудования потребляемая мощность и ток выросли. Это привело к росту потерь в проводах, в том числе в нейтральном, и росту напряжения между землёй и нулём.

Сопротивление между фазой и землёй. Измерение сопротивления заземления

Под термином заземление подразумевается электрическое подключение какой-либо цепи или оборудования к
земле. Заземление используется для установки и поддержания потенциала подключенной цепи или
оборудования максимально близким к потенциалу земли. Цепь заземления образована проводником, зажимом,
с помощью которого проводник подключен к электроду, электродом и грунтом вокруг электрода.

Заземление широко используется с целью электрической защиты. Например, в осветительной аппаратуре
заземление используется для замыкания на землю тока пробоя, чтобы защитить персонал и компоненты
оборудования от воздействия высокого напряжения.
Низкое сопротивление цепи заземления обеспечивает стекание тока пробоя на землю и быстрое срабатывание
защитных реле. В результате постороннее напряжение как можно быстрее устраняется, чтобы не подвергать
его воздействию персонал и оборудование.
Чтобы наилучшим образом фиксировать опорный потенциал аппаратуры в целях ее защиты от статического
электричества и ограничить напряжения на корпусе оборудования для защиты персонала, идеальное
сопротивление цепи заземления должно быть равно нулю. Из дальнейшего описания станет ясно, что на
практике этого добиться невозможно.
Достаточно низкие, но не предельные, значения сопротивления заданы в последних стандартах безопасности
NEC®, OSHA и др.

СОПРОТИВЛЕНИЕ ЗАЗЕМЛЯЮЩЕГО ЭЛЕКТРОДА

На рис.1 показан заземляющий штырь. Его сопротивление определяется следующими компонентами:
(А) сопротивление металла штыря и сопротивление контакта проводника со штырем;
(Б) сопротивление контакта штыря с грунтом;
(В) сопротивление поверхности земли протекающему току, иначе говоря, сопротивление земли, которое часто
является самым важным из перечисленных слагаемых.

Сопротивление между фазой и землёй. Измерение сопротивления заземления

Подробнее:
(А) Обычно заземляющий штырь делается из хорошо проводящего металла (полностью медный штырь или с
медным покрытием) и клеммой соответствующего качества, поэтому сопротивлением штыря и его контакта с
проводником можно пренебречь.
(Б) Национальное бюро стандартизации показало, что сопротивлением контакта электрода с грунтом можно
пренебречь, если электрод плотно вбит и на его поверхности нет краски, масла и подобных веществ.
(В) Остался последний компонент – сопротивление поверхности грунта. Можно представить, что электрод
окружен концентрическими слоями грунта одинаковой толщины. Ближний к электроду слой имеет наименьшую
поверхность, но наибольшее сопротивление. По мере удаления от электрода поверхность слоя увеличивается,
а его сопротивление уменьшается. В конечном счете, вклад сопротивления удаленных слоев в сопротивление
поверхности грунта становится незначительным. Область, за пределами которой сопротивлением слоев земли
можно пренебречь, называется областью эффективного сопротивления. Ее размер зависит от глубины
погружения электрода в грунт.
Теоретически сопротивление земли можно определить общей формулой: R = L / A (Сопротивление =
Удельное сопротивление х Длина / Площадь )
Эта формула объясняет, почему уменьшается сопротивление концентрических слоев по мере их удаления от
электрода:
R = Удельное сопротивление грунта х Толщина слоя / Площадь
При вычислении сопротивления земли удельное сопротивление грунта считают неизменным, хотя это редко
встречается в практике. Формулы сопротивления земли для систем электродов очень сложны и при этом
зачастую позволяют вычислять сопротивление лишь приблизительно. Наиболее часто используется формула
сопротивления заземления для случая одного электрода, полученная профессором Дуайтом (H. R. Dwight) из
Массачусетского технологического института:
R = /2 L x ((In4L)-1)/r
R = , где R – сопротивление заземления штыря в омах, L – глубина заземления электрода, r – радиус
электрода, — среднее удельное сопротивление грунта в Ом·см.